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The dynamics of plant nutation
Vicente Raja1*, Paula L. Silva2, Roghaieh Holghoomi3,4 & Paco Calvo4

In this article we advance a cutting-edge methodology for the study of the dynamics of plant 
movements of nutation. Our approach, unlike customary kinematic analyses of shape, period, or 
amplitude, is based on three typical signatures of adaptively controlled processes and motions, 
as reported in the biological and behavioral dynamics literature: harmonicity, predictability, and 
complexity. We illustrate the application of a dynamical methodology to the bending movements of 
shoots of common beans (Phaseolus vulgaris L.) in two conditions: with and without a support to climb 
onto. The results herewith reported support the hypothesis that patterns of nutation are influenced 
by the presence of a support to climb in their vicinity. The methodology is in principle applicable to a 
whole range of plant movements.

Since first described extensively by Charles  Darwin1,2, bending movements of nutation have been studied 
in monocotyledons and  dicotyledons3, in fungi, algae, or  bryophytes4,5, and in shoots and roots of climbing 
 plants6–10, among  others11–14. Most kinematic aspects of nutation in different plants species have been thor-
oughly researched—e.g., oscillatory shapes and  directions15–17,  period18,19, or  amplitude20,21. Nutation kinemat-
ics of different organs has served to lay a foundation of several mechanisms postulated as responsible for the 
movement in question: internal  oscillators2,20,22, gravitation-driven  mechanisms23,24, or a combination of these 
two  mechanisms25–27. Moreover, nutation has been taken to be an instance of plants’ adaptively controlled 
 motion2,27–32. However, which one of those proposed mechanisms better accounts for the complex kinematics 
of plant nutation, both generally and in terms of adaptive control, requires experimental adjudication.

Different models inspired by very different assumptions aim to do so. The assumptions of these models 
range from a purely nastic, non-directional nature of the  movement17 to a full-fledged tropic rendering, includ-
ing models that resort to kinematical landmarks deployed in the animal literature to characterize directional 
grasping  behavior33. All such models nonetheless run the risk of generating the same average kinematical pat-
terns—quasi-circular and quasi-elliptical patterns depending on their parametrization—despite those different 
 assumptions17,22,23,34–36. For this reason, current methods based solely on the kinematics of nutation are not 
helpful in deciding between the different hypotheses regarding the tropic and/or nastic components of plant 
nutation and their underlying mechanisms. A fundamental step to experimentally discern about these issues is 
to achieve a more profound understanding of the nature of plant nutation.

The aim of this article is thus to go beyond basic plant kinematics to improve our understanding of plant 
nutation through a careful characterization of its underlying dynamical organization. To overcome the problems 
of the approaches based on kinematical patterns, we looked for methods described outside the field of plant 
science to capture the dynamical processes that give rise to those patterns. These methods, thoroughly used in 
the behavioral and biological  sciences37–40, are not based on summary statistics or average patterns, blind to 
the temporal dependencies in the observed movement. Instead, the methods herewith reported are sensitive to 
such temporal dependencies, offering better access to the underlying dynamical organization that gives rise to 
them. In this sense, we are not proposing just an alternative description of nutation patterns but a completely 
novel way to look at them.

Our methodology is based on the analysis of time series gathered by a common procedure in the field—time-
lapse, zenithal point-view recording of  nutation7,27,31,41—and provides measurements for three typical signatures 
of biologically controlled processes reported in the literature on biological and behavioral dynamics: harmonicity, 
predictability, and  complexity42–56. The relationship between these signatures and biologically controlled processes 
has to do with the temporal dependencies of these processes. As opposed to completely random processes, the 
states of controlled processes at any moment of time, although variable, are partially determined by their own 
previous states and by the environmental factors that influence them. The influences of those environmental 
factors make biologically controlled processes more predictable with respect to them: they tend to re-visit similar 
states due to those influences. And the combination of variability (randomness) and determinism is the signa-
ture of complex  processes46,53,57–61.This is the sense in which the proposed measurements are adequate to study 
biologically controlled processes.
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To illustrate the application of the methodology in the plant sciences, we compared the nutation dynamics of 
bean plants growing with and without a support (a pole) to twine around in otherwise identical environments. 
We hypothesized that if nutation patterns were influenced by the presence of sources of perturbation in the vicin-
ity such as the presence of a pole, the plants’ bending movements would exhibit a nonlinear organization that 
would be more predictable and complex when the pole was present. The logic of our study, therefore, consisted 
in first gathering the proper data to assess the dynamics of plant nutation. Then, we confirmed that nutation 
patterns were the product of nonlinear processes by using a harmonicity index. Finally, we explored the effect 
of a pole when present in the vicinity of plants by assessing its influence in the predictability and the complexity 
of their nutation patterns.

In the rest of the paper, we show how the general methodology was applied in the mentioned study and the 
way in which the measurement of the dynamical properties of nutation patterns speak to the possible mechanism 
that controls movement and the influence of the climbing support. Overall, our aim is twofold: (i) to illustrate 
the use of nonlinear methods to test hypotheses regarding the nature of plant nutation and the environmental 
factors that might influence it; and (ii) to furnish plant scientists with a set of guidelines for the processing of 
movements of nutation in a reliable and informative manner.

Results
The first step of our study was to gather the appropriate time-series data to analyze the dynamical features of 
nutation patterns. To do so, we designed an experimental analysis on the common bean (Phaseolus vulgaris L. 
var. Bueno Aires) based on established  protocols27. Concretely, we recorded the behavior of twenty potted com-
mon bean plants in two different conditions: with and without a climbing support (a pole) in their vicinity (see 
Supplementary Video V1 and V2). The twenty plants were placed pairwise in two identical recording cylindrical 
booths, one pair at a time for a total of ten pairs (Fig. 1). In one of the cabins, a pole was placed 30 cm away from 
the plant. There was no climbing support in the control recording cabin (see “Methods” section).

Zenithal pictures were taken at one-minute intervals from the onset of plant nutation until the shoot tip of 
the bean made contact with the pole. Time-lapse footage was assembled out of the zenithal frames being taken 
(number of frames ranged from 2300 to 5300; M ± SD = 3576.5 ± 842.83). Using the Circumnutation Tracker (CT) 
 software41, the position of each plant’s shoot tip in the horizontal plane was digitalized at a 6 Hz rate and time 
series of the movement that ranged between 451 and 1049 data points (M ± SD = 715.3 ± 168.56) were generated 
(Fig. 2b; see also Supplementary Data D1). Fast-Fourier transformations showed that most of the frequency 
power of the movement was concentrated under 0.5 Hz (M ± SD = 0.29 ± 0.05; Fig. 2a). To minimize high fre-
quency noise, a low-pass filter with a cut-off frequency of 1 Hz was used.

To examine the effect of time on nutation dynamics, we divided the data into as many hoping windows of 
100 data points as possible, starting from the last point defined by the moment at which the plant in the pole 
condition touched the pole. For most plants, this procedure guaranteed at least 6 windows of 100 points that 
were used for analysis. Amplitude and frequency of nutation changed over time, but detailed analysis showed 
that data was stationary within each window (see “Methods” section and Supplementary Figure F1). Measures 
of harmonicity, predictability, and complexity of nutation patterns were computed for each plant in each of the 
six analyzed windows (Windows coded 1 to 6; see Table 1 and Supplementary Data D1).

Harmonicity of nutation patterns: normalized peak acceleration. Biologically controlled pro-
cesses—including movements—are the product of nonlinear dynamics that make them diverge from purely 
harmonic patterns. In our study, we used Normalized Peak Acceleration (NPA) to quantify such divergence. 
NPA was computed to assess the degree of deviation of the recorded plant movements from a purely sinusoidal 

Figure 1.  Diagram of the experimental setting (see Method for full details). Cylindrical booth for the pole 
condition. The cylindrical booth for the no-pole condition was identical except for the presence of the pole. 
Left: Zenithal camera viewpoint of a bean plant and the pole (30 cm away from the bean plant; height: 0.90 cm, 
diameter: 1.8 cm) in the cylindrical boot (width: 93 cm). Right: Lateral viewpoint of a bean plant and the pole in 
the cylindrical booth. Time Lapse Camera: Brinno TLC200 PRO (height: 130 cm); 4.2 µm High Dynamic Range 
(115 dB) image sensor for recording in darkness. Illumination: high-pressure sodium lamp Lumatek pulse-start 
HPS Lamp 250 W (height: 150 cm; photon fluence rate: 430 ± 50 μmol m–2 s–1 at leaf level). A white parabolic 
reflector provided symmetrical lighting.
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(harmonic) pattern. Aω2 corresponds to the peak acceleration of a sinusoidal movement of amplitude A and 
frequency ω2. Thus, a purely sinusoidal movement governed by linear dynamics gives rise to an NPA value of 1. 
Figure 3a displays the mean (and standard error) of NPA over time for the two conditions. Observed NPA val-
ues are larger than 1 and therefore indicate that nutation patterns are not purely sinusoidal or harmonic. These 
deviations from harmonicity in turn signal the contribution of nonlinear processes to nutation.

Linear mixed effect analysis examined the fixed effect of pole (No Pole = 0, Pole = 1), time (Window = 1 to 6), 
and their interaction on NPA. The full model also included the random effects of individual plant, plant pair, 

Figure 2.  Three examples of the detail of the time series (Pair 1, Pair 7, and Pair 9 out of the ten pairs used in 
the study). Every row corresponds to one pair of plants. (a) Fast-Fourier Transformation of the pairs of time 
series organized by condition. Main frequency components were around 0.15–0.35 Hz for all plants. (b) Time-
series organized by condition. Displacement of the shoot-tip across the x-axis of the frames. Amplitude of the 
displacement of the shoot-tip (in pixels) is plotted against time (in samples).

Table 1.  Window selection for each pair of plants. Hoping windows (100 samples each) are labelled starting 
from the last window (6) and going backwards from it. The process of selection ensures homogeneity and 
stationarity of the data in the windows relevant for the analysis (Windows 1 to 6).

Pair Total

Samples per Window (Range)

−4 −3 −2 −1 0 1 2 3 4 5 6

1 846 – – 0–45 46–145 146–245 246–345 346–445 446–545 546–645 646–745 746–846

2 1049 0–48 49–148 149–248 249–348 349–448 449–548 549–648 649–748 749–848 849–948 949–1049

3 795 – – – 0–94 95–194 195–294 295–394 395–494 495–594 595–694 695–795

4 760 – – – 0–59 60–159 160–259 260–359 360–459 460–559 560–659 660–760

5 655 – – – – 0–54 55–154 155–254 255–354 355–454 455–554 555–655

6 750 – – – 0–49 50–149 150–249 250–349 360–449 450–549 550–649 650–750

7 451 – – – – – – 0–50 51–150 151–250 251–350 351–451

8 528 – – – – – 0–27 28–127 128–227 228–327 328–427 428–528

9 619 – – – – 0–18 19–118 119–218 219–318 319–418 419–518 519–619

10 699 – – – – 0–98 99–198 199–298 299–398 399–498 499–598 599–699
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and the nested random effect of time (Window) on NPA. Examination of changes in model fit (-2LL) with step-
wise removal of fixed effects revealed no effect of the pole x window interaction (χ2 (1) = 0, p = 0.99), of the pole 
(χ2 (1) = 1.4649, p = 0.23), or of time (χ2 (1) = 1.402, p = 0.24) on NPA (see Supplementary Data D1 and D2). 
The average changes in NPA values suggest that the patterns of variation in the kinematics of plant nutation are 
more complicated than the gradual shift from more circular to more elliptical shapes commonly reported in the 
 literature7,15,27 (see Fig. 3a). Importantly for present purposes, the changes in kinematics identified by NPA do 
not capture processes that reflect the potential effect of the pole in the pattern of nutation.

Predictability of nutation patterns: sample entropy. The second signature of biologically controlled 
movements we explored in our study was predictability. When biological movements are controlled, they are 
controlled with regard to relevant environmental factors. For this reason, these movements are more predict-
able in the presence of those factors. In our study, we used a Sample Entropy (SampEn) analysis to measure the 
predictability (or regularity) of nutation patterns over time. SampEn constructs vectors of length m out of the 
data points and then computes the conditional probability of finding matching vectors of length m + 1 within a 
tolerance radius r if matching vectors of length m have been already found within that tolerance radius r. Lower 
SampEn values (values closer to 0) indicate more predictability. Figure  3b displays the mean (and standard 

Figure 3.  Normal peak acceleration (NPA) and sample entropy (SampEn). (a) NPA Analysis. Average values 
of NPA per windows 1 to 6 including standard errors. Solid light blue line plots average NPA values for plants 
in pole condition and dashed light blue line plots its linear trend. Solid dark blue line plots mean NPA values 
for plants in no-pole condition and dashed dark blue line plots its linear trend. (b) SampEn Analysis. Average 
SampEn values per windows 1 to 6 and standard errors for m = 2, r = .25. Solid light blue line plots average 
SampEn values for plants in pole condition and dashed light blue line plots its linear trend. Solid dark blue line 
plots average SampEn values for plants in no-pole condition and dashed dark blue line plots its linear trend.
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error) of SampEn over time for the two conditions when the length of vectors is m = 2 and the tolerance radius is 
r = 0.25. Observed changes in SampEn values in Fig. 3b suggest that nutation patterns become more predicatable 
in time for both conditions and that nutation is more predictable in the presence of the pole.

To test this observation, we run a linear mixed effect analysis to examine the fixed effect of pole (No Pole = 0, 
Pole = 1), time (Window = 1 to 6), and their interaction on SampEn. The full model also included random effects 
of plant pair and the nested effect of time (Window) on SampEn. Examination of changes in model fit (-2LL) 
with step-wise removal of fixed effects revealed a significant effect of time (χ2 (1) = 14.973, p < 0.001) and a sig-
nificant effect pole (χ2 (1) = 4.9049, p < 0.03) on SampEn (see Table 2, and Supplementary Data D1 and D2). The 
interaction between pole and time was not significant. This suggests a progressive increase in predictability of 
nutation patterns as plants grow, and an influence of the presence of a pole in the vicinity of plants in the overall 
predictability of the time series. Such an influence is a first indicative of the possible effect of the availability of a 
support to climb on the patterns of climbing beans’ nutation by making them more predictable. 

Complexity of nutation patterns: EMD-based multiscale sample entropy. The results of the 
above analysis of the predictability of the climbing beans’ nutation patterns suggest that the presence of a pole in 
their vicinity has an effect in the dynamics of the movements. This kind of effect is usually reflected in its com-
plexity: when the movement is controlled with respect to an environmental factor, it becomes more complex in 
the presence of that factor. In our study, Multiscale Sample Entropy (MSE) was used to analyze the complexity of 
nutation patterns; that is, the degree of interactivity of multiscale processes giving rise to nutation. Accordingly, 
MSE computes SampEn of nutation patterns over time at different temporal scales of the movement. These scales 
are defined in terms of its intrinsic mode frequencies (IMFs) by a procedure of fine-to-coarse Empirical Mode 
Decomposition (EMD; see Fig. 4a). Higher irregularity (or higher magnitudes of SampEn) on a single scale can 
indicate less deterministic structure or a greater degree of randomness in the pattern. Higher irregularity that 
is preserved across two or more temporal scales, however, suggests greater complexity: a mix of interconnected 
deterministic and stochastic processes evolving across scales typical of adaptive, biological movements. This is 
usually reflected in higher and more stable SampEn values across those scales although the SampEn value of the 
first scale—the whole signal—may be higher for the least complex  data46–48,53–56. Consistent with MSE literature, 
average SampEn values across scales of analysis in Fig. 4b suggest that the irregularity of nutation patterns is 
slightly higher for the no pole condition at scale 1 (left chart). The irregularity of nutation patterns and its associ-
ated SampEn values progressively become higher and more stable in subsequent scales for the plants in the pole 
condition for at least some windows of time (right chart).

To test this observation, we ran a linear mixed effect analysis to examine the fixed effects of pole (No Pole = 0, 
Pole = 1), time (Window = 1 to 6), and temporal scales of analysis (Scale = 1 to 7), in addition to all their interac-
tions on SampEn (m = 2, r = 0.25). The full model also included the random effect of plant pair along with a nested 
random effect of time (Window) and the random effect of individual plants along with a nested random effect 
of scale on SampEn. Removing the pole x window x scale interaction from the model resulted in a significant 
reduction in fit (-2LL), χ2 (1) = 5.6645, p = 0.017 (see Table 3, Full Model; see also Supplementary Data D1 and 
D2). A detailed visual analysis of the average changes in SampEn across scales for the different windows in the 
two conditions (Fig. 4b) guided initial interpretation of this statistically significant three-way interaction. In 
particular, we observe that the overall reduction in the magnitude of SampEn (i.e., the amount of irregularity in 
nutation patterns) as we move across temporal scales of analysis follows two different arrangements. Notably, in 
the no pole condition the magnitude of SampEn is not preserved across any of the temporal scales of analysis. 
In contrast, when the pole is present the magnitude of SampEn is preserved across scales 2 and 3 for windows 
3, 4, and 6. This is a signature of the complex structure in the variability of those patterns at those stages of the 
movement (Windows = 3, 4, and 6) and at temporal scales (Scale 2–0.1 Hz, and Scale 3–0.05 Hz) that capture a 
relevant part of the frequency power of the signal (see Fig. 4a).

To determine whether these observed arrangements were statistically reliable, we ran a linear mixed effect 
analysis to examine the changes of SampEn values for the two conditions (No Pole = 0, Pole = 1) focusing in scales 
2 and 3 and windows 3, 4, and 6. The model included the random effect of plant pair and the nested effect of time 
(Window). Removing the pole x scale interaction effect from the model resulted in a significant reduction of fit 

Table 2.  Final model estimated to test the effects of time (Window) and condition (Pole) on SampEn. The 
model includes all significant fixed effects and all random and nested random effects. Intercept provides an 
estimate of performance in the base line condition (No Pole = 0). Estimates are the non-standardized weights 
or coefficients in the linear mixed effect model.

Single-scale sample entropy (SampEn)

Fixed effects Estimate Standard error (SE)

(Intercept) 0.502 0.035

Condition: pole − 0.027 0.011

Time: window − 0.023 0.005

Random effects Variance Standard deviation (SD)

Pair (intercept) 0.002 0.049

Nested: window 0.008 0.087

Residual 0.004 0.064
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(-2LL), χ2 (1) = 4.3589, p < 0.04 (see Table 3, Focused Model; see Supplementary Data D1 and D2). Follow-up 
analyses of variance showed that average SampEn values were significantly reduced from scale 2 to scale 3 in 
windows 3, 4, and 6 for the no-pole condition (F(1, 4) = 60.69, p = 0.001), but not for the pole condition (F(1, 
4) = 1.28, p = 0.32), confirming the arrangements observed in Fig. 4b (see Supplementary Data D1 and D2). 
Subsequent MSE analysis of the surrogate shuffled time series of the plants in the pole condition showed the 
vanishing of the arrangement observed in Fig. 4b and, therefore, offered further support to the presence of a 
complex structure in the variability of nutation patterns in windows 3, 4, and 6 (see Supplementary Figure F1). 
In conjunction, these results show that when a climbable structure is present in the plants’ environment, the 
variability in nutation patterns is more complex, that is, structured by a blend of deterministic and random 
processes. Such results constitute further evidence for the possible effect of the availability of a support to climb 
on the patterns of climbing beans’ nutation.

Discussion
One aim of our study was methodological: for the first time in the literature, we applied nonlinear methods of 
behavioral analysis to the dynamics of plant nutation. The direct study of the dynamical features of plant nutation 
provides a way to understand the movement beyond its kinematical characteristics. The study of the kinematics 
of nutation usually requires a two-dimensional7 or even a three-dimensional17 analysis to reach an understand-
ing of the movement that is allegedly able to shed light on its underlying  mechanism15, 17,22. However, we have 
shown that there are methods to assess dynamical features of plant nutation from a one-dimensional time-series 
describing the movement over time—as it is commonly acknowledged in the sciences of  complexity43,57,62. Indeed, 
the proposed methodology allows for a direct and complete study of the dynamics of plant nutation without 

Figure 4.  Empirical Mode Decomposition and Multiscale Sample Entropy. (a) Example of EMD analysis of a 
time series and of the fine-to-coarse EMD procedure. The 4 panels show the EMD for the Pair 3, pole condition 
plant (see Table 1). From top to bottom, each panel shows: full time series (green), six IMFs (blue), and Rest of 
signal (red). Light blue squares show IMFs that are included in each Scale generated by a fine-to-coarse EMD 
procedure. Left panel represents Scale 1 including IMFs 1 to 6 (the whole signal). Second to left panel represents 
Scale 2 including IMFs 2 to 6 after subtracting the highest frequency component (IMF 1). Second to right 
panel represents Scale 3 including IMFs 3 to 6 after subtracting the two highest frequency components (IMFs 
1 and 2). Right panel represents Scale 4 including IMFs 4 to 6 after subtracting the three highest frequency 
components (IMFs 1, 2, and 3). (b) EMD-based MSE (m = 2, r = .25) for all windows and scales. Left chart shows 
no-pole condition. Right chart shows pole condition. General reduction of the average magnitude of SampEn is 
observed for both conditions. The average magnitude of SampEn is preserved across scales 2 and 3 for windows 
3, 4, and 6 in pole condition.
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relying on particular kinematic patterns or ad hoc modelling criteria (e.g., modeling climbing plants’ grasping 
of a support in terms of hypothetical animal wrist-like and digit-like—thumb and index—ensembles)33. It is 
important to note that our methodology frees hypothesis-testing from zoomorphic biases.

Another important aspect of the methodology is that it provides guidelines for plant scientists to process nuta-
tion data, and potentially other plant movements, in a reliable and informative way. The methodology (described 
in detail in the “Methods” section) can be applied to any movement data collected by time-lapse videos from the 
zenithal point of view and digitalized in the form of time series of data points. This fact, along with the already 
mentioned parsimony of assumptions, makes the methodology widely applicable. Moreover, the methodology 
provides justification and procedures for choosing one dimension of the movement, for assessing the frequency-
resolution needed to capture the relevant information, for assessing stationarity, for selecting the windowing 
of the data, and for selecting the parameters of the entropy analyses. In this way, the proposed methodology 
becomes a basis for the generalization of nonlinear methods of behavioral analysis for plant movements.

When the methodology was applied to the study of common beans’ nutation in two conditions (pole vs. no 
pole), the way dynamical measurements allowed for a deeper understanding of the movement became manifest. 
Our hypothesis was that, if the presence of a support to climb had an effect in the patterns of nutation, this fact 
would be reflected in the dynamical properties of the movement. In particular, common beans’ nutation with a 
support to climb in their surroundings would exhibit common signatures of biologically controlled processes 
in terms of harmonicity, predictability, and complexity. The results of our study show these three signatures in 
nutation, strongly suggesting that the support to climb is to be regarded as a relevant environmental factor for 
the biological control of nutation.

This result speaks to the mechanism of nutation and its relationship to the kinematics of the movement. First, 
the results of the analysis of harmonicity show that the commonly reported gradual shift from more circular 
to more elliptical shapes in the nutation patterns of climbing beans is actually a non-gradual, elaborate shift 
and is not related to the possible adaptive processes that guide plants towards a support to climb. And second, 
the differences found both in single-scale and multiscale sample entropy for the two conditions suggest that a 
mechanism based on endogenous, purely linear  oscillators2,17,20,22 are not good enough to capture the complexity 
of nutation in different environmental settings. Instead, a mechanism that is not merely influenced by endog-
enous factors, and that is sensitive to the position of a support to climb in the environment of the plant, proves 
to be a better candidate.

Last, the complexity shown by nutation patterns in our study when a support to climb was present in the 
surroundings of the plants is compatible with the finding that complexity in plants’ electrical signaling may be 
driven by external  factors63. More research is needed to fully understand nutation dynamics and to corroborate 
different aspects of their tropic components—e.g., exploring nutation in other plants, modelling nutation both 
at the behavioral and cellular scales, etc.—and the seemingly intermittent influence of the support to climb onto. 
These may be due to other conditions intermittently affecting the movement; conditions whose identification 
calls for the development of yet further experimental designs. Overall, the proposed methodology, formed by 
three different measurements of movement dynamics, constitutes a robust tool to pursue this kind of research. 

Table 3.  Final models estimated to test the effects of time (Window) and condition (Pole) on SampEn at 
the different temporal scales of analysis generated by a fine-to-coarse EMD procedure (Scale). Left panel: 
Full model including all windows and scales. Right panel: focused model including windows 3, 4, and 6, and 
scales 2 and 3. Both models include all significant higher-order interactions, all lower-order interactions, all 
component lower-order effects, and all random and nested random effects. Interactions are marked by ‘*’. 
Intercept provides an estimate of performance in the base line condition (No pole = 0). Estimates are the non-
standardized weights or coefficients in the linear mixed effect model.

Multiscale sample entropy (MSE)

Full model Focused model

Fixed effects Estimate (SE) Fixed effects Estimate (SE)

(Intercept) 0.436 (0.029) (Intercept) 0.501 (0.074)

Condition: pole 0.083 (0.028) Condition: Pole − 0.188 (0.09)

Time: window − 0.007 (0.005) Time: window − 0.009 (0.008)

Scale − 0.08 (0.009) Scale − 0.111 (0.025)

Pole*window − 0.026 (0.007) Pole*scale 0.075 (0.035)

Pole*scale − 0.009 (0.009)

Window*scale 0.001 (0.001)

Pole*window*scale 0.004 (0.002)

Random effects Variance (SD) Random effects Variance (SD)

Pair (intercept) 0.005 (0.068) Pair (intercept) 0.0004 (002)

Nested: window 0.0004 (0.02) Nested: window 0.001 (0.03)

Plant (intercept) 0.00009 (0.009) Residual 0.009 (0.097)

Nested: scale 0.0005 (0.022)

Residual 0.004 (0.064)
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With this methodology, plant scientists can improve the understanding of the dynamics of plant movements 
and gain perspective with regard to the fundamental features and underlying mechanisms of plant nutation.

Methods
Plant materials. Experiments were performed with the common bean (Phaseolus vulgaris L.). Seeds of the 
cultivar “Buenos Aires” were provided by Semillas Ramiro Arnedo S.A., Spain https ://www.ramir oarne do.com.

Germination and growth conditions. Plants were light-grown from seed in a controlled-environment 
chamber (300 × 400 × 240 cm.) at the Minimal Intelligence Lab (MINT Lab), University of Murcia, Spain.

Prior to sowing, Buenos Aires var. common bean seeds were germinated on filter paper, soaked in an aque-
ous solution of hydrogen peroxide  (H2O2)—15 mL distilled water/3 mL  H2O2—to promote germination in Petri 
dishes kept in darkness for 24–48 h. Upon germination, young seedlings were transferred to coconut fiber grow-
ing pellets and kept on propagation trays. Humidity levels were checked periodically to maintain a moist bedding.

Once the first pair of true leaves had appeared, healthy-looking seedlings were transplanted into a mixture 
of peat moss and perlite (70–30%) in the center of small black plastic pots (70 × 70 × 80 mm. in depth). The tem-
perature of the growth chamber was kept on a 23 °C (day) and 19 °C (night) ± 1 °C, photoperiod at L16:D8 h. 
light cycle, and relative humidity 55% ± 5%. Light was delivered from the top (photosynthetically active radiation 
(PAR) photon fluence rate of 235 ± 25 μmol m–2 s–1 at leaf level—Delta OHM HD 9021 solid state PAR sensor, 
Caselle di Selvazzano (PD), Italy).

Plants were watered (filtered tap) two hours into the photoperiod. All seedlings received the same amount 
of water per day; amount that progressively increased with plant age from 20 to 60 mL. No other treatment was 
applied.

Stimulus and experimental design. Measurements were carried out from the onset of ‘bending’: a mor-
phological feature characteristically displayed in P. vulgaris as the apical segment below the horizontal section of 
the shoot apex in ca. two-week-old plants becomes  curved15.

Plants were pairwise compared with an eye to selecting the most similar seedlings as model plant pairs, prior 
to transfer to the recording booths. Pairwise comparisons were based on uniformity in stem and internode 
length and diameter, leaf shape and total leaf area. The most uniform subjects that were ready to be transferred 
into the recording booths were selected. These were transplanted to larger pots (Air Max 7 L square plant pots—
200 × 200 × 270 mm in depth) filled with the same mix (70% peat moss/30% perlite). Potted plants were saturated 
with filtered tap water, and allowed to drain, to avoid any further watering during time-lapse recordings. Pilot 
 tests31 confirmed that humidity levels could be kept within an optimal range for the duration of the experiment.

Ten pairs of potted plants (20 plants in total) were then randomly allocated, each pair at a time, to two 
cylindrical booths within the growing chamber, where each plant was placed at the center of a bottom cylinder. 
Booths were identical with the exception of a vertical pole (height: 0.90 cm; diameter: 1.8 cm.) presented as a 
stimulus—a potential support for the bean to twine around—in only one of the two booths. The pole was placed 
at a distance of 30 cm from the plant center. Before starting recordings, plants were allowed to stabilize for 2 h 
after having been transferred.

Each booth consisted of a right circular cylinder with a radius of 93 cm. A height of two meters of the 
vertical cylindrical surfaces, together with the disposition of the booths within the growth chamber, was such 
that it prevented air circulation produced by the chamber’s extractor (RVK 1000 m3/h) and injector (PK150-L 
780 m3/h) used for air renewal and temperature regulation from affecting plants’ nutation. To distribute light 
more uniformly, controlling thereby for light-related factors other than the presence of the pole in the vicinity 
of the plant, the cylindrical surfaces were covered in white reflective film.

The light source consisted of a high-pressure sodium lamp (Lumatek pulse-start HPS Lamp 250 W) with 
specific horticultural gas blend for optimal spectral output consistency and PAR/PPF level maintenance for plant 
growth. Symmetrical lighting was ensured by suspending lamps vertically within the cylindrical booths under a 
white parabolic reflector. Lamps were positioned centered at 150 cm above each potted plant, providing a photon 
fluence rate of 430 ± 50 μmol m–2 s–1 at leaf level.

Video recording. Time-lapse cameras (Brinno TLC200 PRO) were placed within each booth 130 cm. off 
the ground, pointing vertically down to the center of the potted plant. Time-lapse records were made, the time 
interval between frames for data collection of the position of the shoot tip at one frame per minute. A 4.2 µm 
High Dynamic Range (115 dB) image sensor made time-lapse recording possible during the 8 h of darkness 
under a dim phototropically inactive green safelight with a fluence rate under 5 μmol m–2 s–1. The bottom face 
of the cylinder was covered in black to maximize the contrast between the shoot tip and the background whilst 
recording.

Data processing. The first processing step is to digitize the 2D coordinates of shoot tips obtained from 
time-lapse videos. This procedure introduces noise in the time-series, which can be minimized if the selected 
level of resolution is not too high considering the rate of change in the position of shoot tips. To that end, we 
digitized the time-lapse videos using resolutions of 24 Hz, 6 Hz, and 3 Hz, and computed the spectral proper-
ties of the resulting three time-series using Fast-Fourier transformations. The transformations showed that the 
fundamental frequencies of the movement were concentrated under 0.5 Hz (M ± SD = 0.29 ± 0.05; Fig. 2a above) 
for the three tested frequencies, ensuring the robustness of our digitalization process. We subsequently selected 
the central resolution value, 6 Hz. This choice guarantees that the resulting 2D time-series of the plants’ shoot 
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tips include the relevant information about the nutation movement while avoiding meaningless noise. It also 
guarantees long enough time series for dynamical analysis.

In line with the literature on dynamics, we assume that the underlying dynamical organization of biological 
rhythmic movements can be appropriately reconstructed from a single measurement of the behavior of  interest62. 
Thus, for all the analyses described below, we have only used the digitalized position time-series of the plants’ 
shoot-tips in the horizontal axis of the video frames.

Stationarity testing. Two of the three dynamical analyses used in the present study (Harmonicity and 
Single-Scale Sample Entropy) assume stationarity of time-series data. To test this assumption, we initially applied 
a Dickey–Fuller test (ADF Test)64. This test examines the null hypothesis that a unit root—i.e., a stochastic or 
unpredictable trend or random walk drift in a time-series—is present in a time series sample. If a unit root is not 
found in a time series, there are no grounds for rejecting the null hypothesis, and stationarity is  concluded65. We 
selected this test because of its clear interpretative cut-off to distinguish between stationary and non-stationary 
data. However, the ADF test suffers from low statistical power and can only exclude strong violations. As a 
countermeasure to this limitation, we employed a two-step procedure to determine whether weaker violations 
of stationarity were at play or  not56. The first step consists in applying transformations to the data to make them 
stationary. These transformations involve either differencing the time-series or fitting a polynomial function and 
subtracting the fitted trend from the data. The latter transformation is known as detrending or de-seasoning, 
depending on the way the polynomial function is subtracted from the original time  series66,67. The second step 
consists in applying the analyses that assume non-stationarity to both the original and the transformed data, 
and comparing the results. If results are indifferent to the transformation, it is further evidence that the assump-
tion of stationarity is not being violated (see Supplementary Fig. 1a and b). These methods, however, entail a 
manipulation of the data that might cause the discarding of important information of the time series, so they 
must be used carefully.

Window selection. To examine whether the effect of the pole on nutation dynamics changes over time, 
we parsed the data into time-windows. We used a method for window selection that accomplishes two critical 
goals. First, each window must include enough data points to reveal the underlying dynamical organization of 
nutation patterns. A good rule of thumb for the analyses employed here is a minimum of 100 data points. And 
second, windows must not include many overt variations in amplitude and frequency that can impact the results 
of the dynamical analysis. Accordingly, we selected hoping windows of 100 data points (~ 8 h of movement given 
our data sampling), starting from the last point defined by the moment at which the plant in the pole condition 
touched the pole. For most plants, this procedure guaranteed at least 6 windows of 100 points that could be used 
for the analysis. These relatively small windows prevented large variance in the amplitude and frequency of the 
time series within the windows while providing enough data points for the dynamical analyses—bigger windows 
would have resulted in an increase in the risk of violating the stationarity assumption; smaller windows would 
have compromised the three proposed analyses. However, insofar as nutation patterns can vary dramatically 
across plant species, our methodological recommendations must be read in terms of criteria for window selec-
tion and not in terms of the particular window size herewith selected for the purpose of our analysis.

Data analysis. Measures of harmonicity (Normal Peak Acceleration; NPA hereafter), regularity (Single-
Scale Sample Entropy; SampEn hereafter), and complexity (Multiscale Sample Entropy; MSE hereafter) of nuta-
tion patterns were computed for each plant in each of the six analyzed windows. The analyses performed to 
compute each of these measures will be described in turn.

NPA. The Fast-Fourier transformation (FFT) of the position time-series performed during Data Processing 
(see above) indicated that 99% of the power in the nutation signals was under 1 Hz. Thus, to minimize the influ-
ence of noise in the computation of NPA, all time-series were filtered using a dual-pass second-order Butter-
worth filter with a cut-off frequency of 1 Hz. After filtering, the harmonicity of nutation patterns was computed 
based on the average of the peak acceleration values obtained for each half-cycle68. For a purely sinusoidal (or 
harmonic) movement of amplitude A and frequency ω, peak acceleration is equal to Aω2. NPA was computed 
by dividing the observed peak acceleration by Aω2 and is, thus, a sensitive measure of the degree of harmonicity. 
An NPA of 1 is a signature of harmonic patterns, consistent with purely linear control processes. Deviations of 
NPA from 1 index a departure from a purely harmonic pattern, signaling contributions of non-linear processes 
to the movement of nutation. In order to generate consistent representations of NPA values, NPA values under 
1 were regularized using the formula 2—NPA value.

SampEn. Generally speaking, different entropy measurements of time series (e.g., Kolmogorov–Sinai 
entropy, approximate entropy, SampEn) aim to assess the probability of knowing future states of the series given 
measurements of their current states: the more predictable (or regular) the time series is, the lower entropy it 
has, and vice  versa49,69. In the case of SampEn, such an assessment is pursued in a way inspired by approximate 
 entropy50. The general method of SampEn consists of the comparison of vectors of different length, m (e.g., 
m = 1, m = 2, m = 3, and so on), given a tolerance for assessing similarity, r. For example, vectors m = 2 or m = 3 
are those composed of 2 or 3 data points of the time series respectively. And a tolerance of r = 0.25 defines how 
much different two vectors can be so as to be deemed similar to one another. The method of SampEn calculates 
the conditional probability of finding a match for a vector of m + 1 data points given that it has already found a 
match for a particular (template) vector of m  points46,57 within a tolerance radius r.
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In terms of its two parameters, literature on SampEn recommends vector lengths of m = 1 or 2 and tolerance 
radiuses, r, between 0.1 and 0.25 of the standard deviation of the time  series57. However, given the properties of 
the time series of plant nutation, especially its temporal scale (i.e., small displacements from data point to data 
point) and the general homogeneity of the movement, it might make sense to consider longer vectors (e.g., m = 3) 
than those considered in faster, more variable human/animal movements. Also, different data driven methods 
of parameter selection have been recently proposed like, for example, the calculation of parameters that relies 
on autoregression functions of time  series51. Another option is to estimate the parameter m for a time series by 
plotting the median SampEn values of the time series for several m’s as a function of different values of r and then 
selecting the m or m’s at which the curves of SampEn values converge, as such convergence is an indicative of 
having found the m/m’s that better capture global properties of the time-series52. In the case of parameter r, the 
relative error of SampEn is calculated and plotted against r  values52. The r value at which relative error is minimal 
should be chosen for the analysis. We employed these methods for parameter selection in this study and results 
suggest that, as a general rule, m = 2 or 3 and r = 0.25 are reasonable selections. For all the SampEn analyses in 
this study we used the Sample Entropy Estimation  package70 as available in PhysioNet71.

MSE. Higher values of SampEn (i.e., a measure of reduced regularity) have been interpreted to indicate 
greater complexity in movement  patterns51,52,56. However, this is problematic because its value is maximized 
(around 2) for completely random, unstructured patterns. Such a lack of correspondence may lead to situations 
in which less complex time series get higher SampEn values than more complex  ones53–55. Complex patterns are 
characterized by structured variations (i.e. subtle time correlations) in the midst of randomness, reflecting the 
adaptability (or context sensitivity) of biological  patterns44,58–61. Importantly, this rich mix of order (regularity) 
and disorder is preserved across scales when the pattern is  complex47,53,54,72–74.

MSE assesses the degree of disorder (SampEn) in multiple scales and allows assessment of the extent to which 
it is preserved across scales. Thus, an MSE analysis provides a way to disambiguate between random and complex 
 patterns44,53. In particular, at a more microscopic scale, the non-complex time series (e.g., white noise) have a 
higher SampEn value. However, more complex time series exhibit higher and, more importantly, more stable 
values of SampEn at progressively more macroscopic scales (at least in the relevant scales where structure exists). 
For non-complex patterns, an exponential decrease in SampEn is observed as the scale of analysis is increased.

Performing MSE analyses requires making a decision regarding the way the different spatiotemporal scales 
are defined. A “coarse-graining” method in which different scales are generated by averaging the data points of 
the time series within non-overlapping windows of increasing length—e.g., averaging data points in groups of 
2 points, 3 points, 4 points, etc.—has been  proposed44,53. However, this method has the problem of shortening 
the time series to a half, to a third, to a quarter, and so on, as the windows of data points increase in length. For 
this reason, it is not adequate in the case of regular or short time series. We employed instead an empirical mode 
decomposition analysis (EMD) to carve out the relevant spatiotemporal scales of the time series of  nutation48. 
In this study we used the EMD MATLAB code available  at75.

EMD is a data driven methodology that consists in finding the intrinsic frequency modes (IFM) of time series 
and combining them to generate the different scales. Once these modes are found, there are two ways to perform 
an EMD: (i) coarse-to-fine EMD, in which the lowest-frequency IMF is subtracted from the signal in each step 
until only one IMF is left; and (ii) fine-to-coarse EMD, in which the highest-frequency IMF is subtracted from 
the signal in each step until only one IMF is left. Usually, most of the power of the signal in time-series of plant 
nutation is in the highest-frequency ones, so a fine-to-coarse EMD is recommended to get a better understanding 
of the significant differences between scales.

Finally, to confirm that the complexity observed in MSE analyses was not due to an artifact of the analysis, we 
compared the MSE analysis of original time series with the MSE analysis of their corresponding surrogate shuffled 
time series. Shuffling (i.e., randomly reordering) the original time series destroys their temporal dependencies 
while preserving their statistical features. Therefore, surrogate shuffled time series are by definition less complex 
than the original time series and the features associated with complexity (e.g., the stability of SampEn values 
across relevant scales) in their MSE analysis must vanish if they are not an artifact.

Statistical analysis. We used the lme4  package76 of the R Studio77 suite to estimate linear mixed effect 
regression models to examine the contributions of the pole (No pole = 0, Pole = 1), time (Windows 1 to 6), and 
their interaction to three outcome measures computed to characterize three aspects of plant dynamics: non-
linearity, predictability (regularity), and complexity. When modeling complexity, we additionally examined the 
effect of the temporal scale of analysis (Scales 1 to 7) and its interactions with pole and time. In all cases, we 
started by identifying the random effects of plant pairs and of the individual plants that should be included in 
the model. Null models with different combinations of random effects were systematically estimated and the 
most conservative, best fitting model that converged was selected. We then implemented a backwards approach 
to identify statistically meaningful fixed effects. The full model included the fixed effects of time, pole, and scale 
(when pertinent), and their interactions in addition to the random effects previously identified. Models were 
trimmed by removing fixed effects individually, starting from the higher-order interaction effect. At each step, 
we compared the deviance (−2 Log Likelihood or −2LL) between a larger model and a simpler nested model 
that excluded the predictor under analysis. The change in −2LL follows a chi-square distribution with degrees 
of freedom equal to the difference in the number of parameters between nested models, allowing for a test of 
statistical significance of each fixed effect. Final models included only significant higher-order interactions, all 
lower-order interactions, and all component lower-order effects.
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Data availability
All datasets generated or analysed during this study plus 2 sample videos are included in this published article 
(and its Supplementary Information files). The rest of videos used in the current study are available from the 
corresponding author on reasonable request.
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